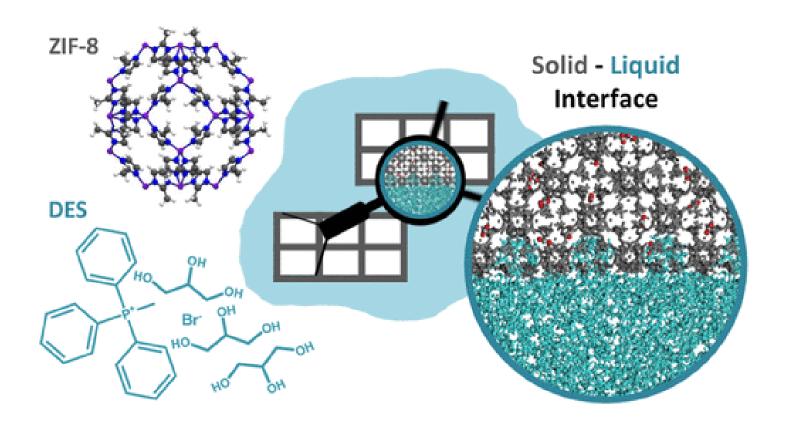

QUEEN'S UNIVERSITY IONIC LIQUID LABORATORIES

QUILL

Literature review

Mark Young Dr Juan José Villora-Picó Clare Rice Emma McCrea Sanskrita Madhukailya

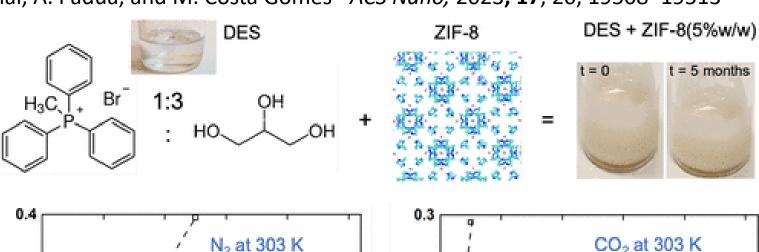
QUILL meeting 25th -26th March

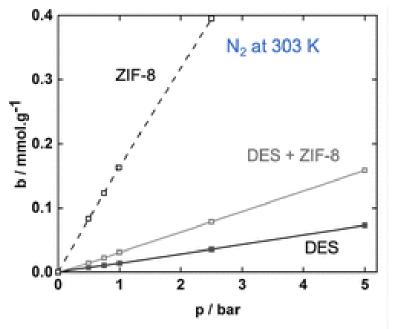

Gas Separations

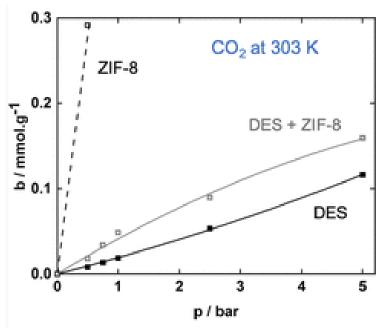
How Do Deep Eutectic Solvents Form Porous Liquids? The Example of Methyltriphenylphosphonium Bromide: Glycerol and ZIF-8

C. Corsini, C. M. Correa, N. Scaglione, M. Costa Gomes,* Agilio Padua*J. Phys. Chem. B, 2024, 128, 10, 2481–2489

- Porous liquids formed form dispersions of solids in liquids
- Generally formed from sterically hindered liquids and ionic liquids
- Glycerol "should" penetrate the pores but does not

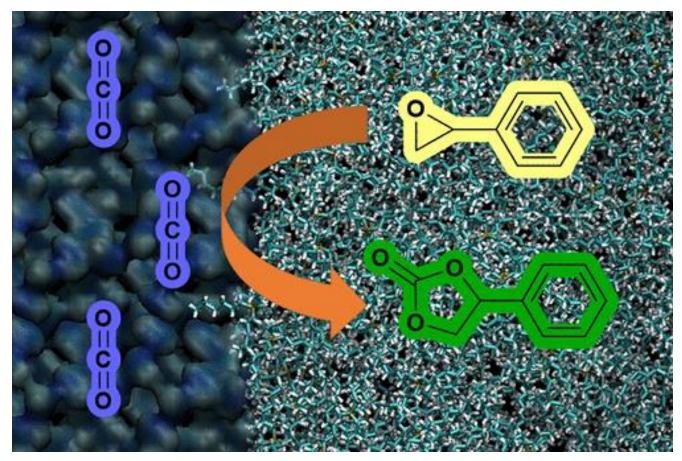



Porous Ionic Liquids Go Green



J. Avila, C. Corsini, C. M. Correa, M. Rosenthal, A. Padua, and M. Costa Gomes* ACS Nano, 2023, 17, 20, 19508–19513

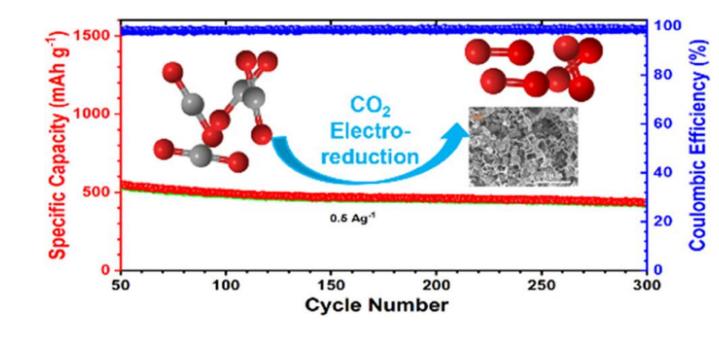
- Stable dispersions of ZIF-8 formed
- Increased CO₂ and N₂ capacity of PL
- Various other application including electrochemistry and biocompatibility


Solvation Environments in Porous Ionic Liquids Determine Selectivity in CO₂ Conversion to Cyclic Carbonates

LABORATORIES QUILL

R. Clark J. Ávila M. Costa Gomes, A. A. H. Padua,* *J. Phys. Chem. B,* 2023, **127,** 14, 3266–3277

- Uses MOF as a gas reservoir ensuring good CO₂ supply too reaction
- Concept can be applied to many reactions using gas as a reagent
- ZIF-8 increases selectivity and catalyses reaction
- Has large applicability on a large scale

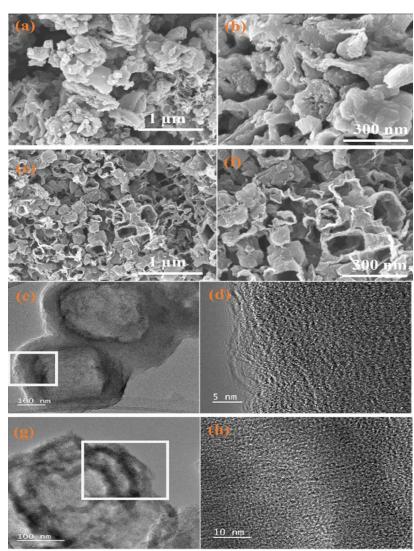

Low-Temperature Molten Salt Electrochemical CO₂ Upcycling for Advanced Energy Materials

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

B. P. Thapaliya*, A. S. Ivanov, H. Chao, M. Lamm, H. M. Meyer III, M. Chi, X. Sun, T.Aytug, S. Dai*, S. M. Mahurin* *ACS Appl. Mater. Interfaces* 2024, **16**, 2, 2251–2262

- Reduction of CO₂ to porous carbon
- Li₂CO₃-Na₂CO₃-K₂CO₃ eutectic mixture
- Uses molten salts at temperature as low at 450°C
- High coulombic efficiency

Low-Temperature Molten Salt Electrochemical CO₂ Upcycling for Advanced Energy Materials


QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

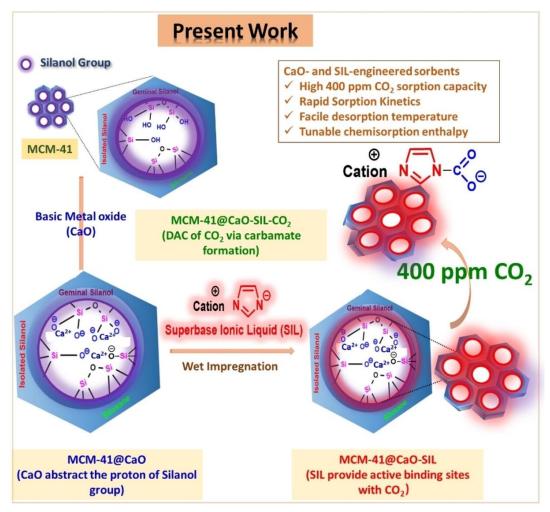
B. P. Thapaliya*, A. S. Ivanov, H. Chao, M. Lamm, H. M. Meyer III, M. Chi, X. Sun, T.Aytug, S. Dai*, S. M. Mahurin*

ACS Appl. Mater. Interfaces 2024, **16**, 2, 2251–2262

Synthesised carbons have various architectures

- High BET surface areas up to 608 m²/g
- Both amorphous and crystalline regions for Li ⁺ intercalation
- Carbons had tuneable electrochemical properties

High-Performance CO₂ Capture from Air by Harnessing the Power of CaO- and Superbase-Ionic-Liquid-Engineered Sorbents

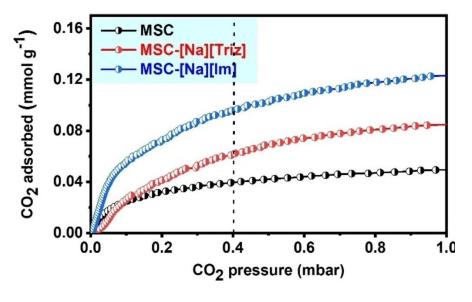


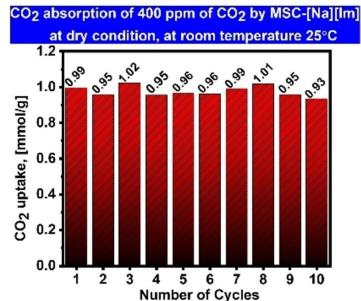
QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

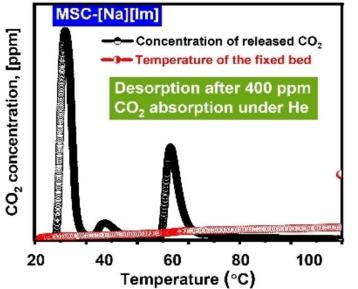
D. Moitra, N. Mokhtari-Nori, K. M. Siniard, L. Qiu, J. Fan, Z. Dong, W. Hu, H. Liu, De-en Jiang, H. Lin, J. Hu, M. Li, Z. Yang, S.

Dai, ChemSusChem, 2023, 16, e2023008

- Hybrid material for direct air capture
- High surface area and fast reaction kinetics
- Can strip CO₂ at low P_{CO2}(400 ppm)
- Reactive imidazole IL used for chemical sorption

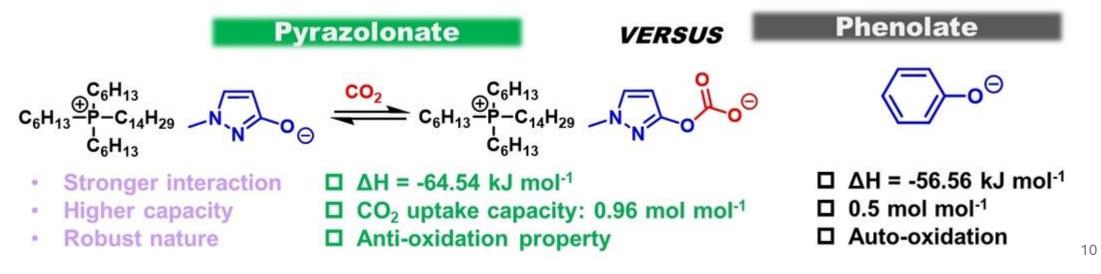



High-Performance CO₂ Capture from Air by Harnessing the Power of CaO- and Superbase-**Ionic-Liquid-Engineered Sorbents**

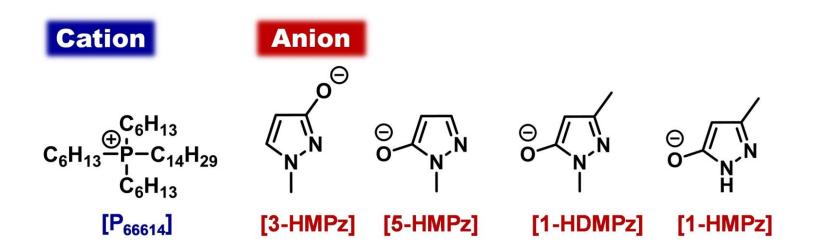


D. Moitra, N. Mokhtari-Nori, K. M. Siniard, L. Qiu, J. Fan, Z. Dong, W. Hu, H. Liu, De-en Jiang, H. Lin, J. Hu, M. Li, Z. Yang, S. Dai, ChemSusChem, 2023, 16, e2023008

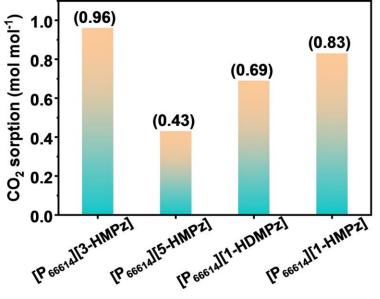
- Low temperature complete regeneration (70 °C)
- 3 step desorption (Adsorbed, CaO, Imidazolate)
- Gas sorption is more than doubled by addition of IL in MSC

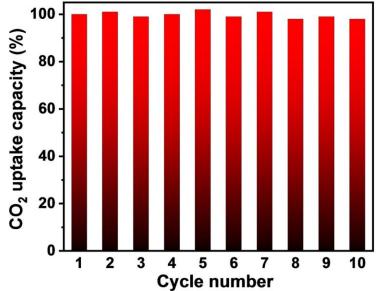

Surpassing the Performance of Phenolate-derived Ionic Liquids in CO₂ Chemisorption by Harnessing the Robust Nature of Pyrazolonates

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

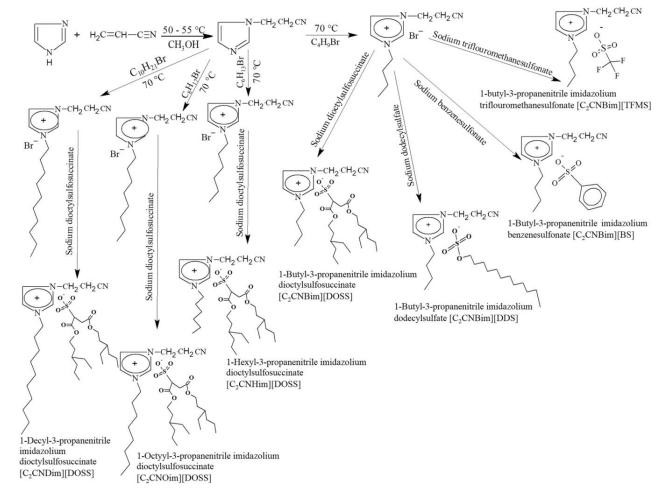

L. Qiu, Y Fu, Z. Yang, A. C. Johnson, C. Do-Thanh, B. P. Thapaliya, S. M. Mahurin, L. He, De-en Jiang, S. Dai *ChemSusChem*, 2023, e202301329

- New chemical sorption system for CO₂ capture
- Pyrazanolate replaces phenolate as anion
- Higher mole fraction uptake capacity
- No auto oxidation to quinones (problem with phenolate) or Ylide formation


Surpassing the Performance of Phenolate-derived Ionic Liquids in CO₂ Chemisorption by Harnessing the Robust Nature of Pyrazolonates


- L. Qiu, Y Fu, Z. Yang, A. C. Johnson, C. Do-Thanh, B. P. Thapaliya, S. M. Mahurin, L. He, De-en Jiang, S. Dai, *ChemSusChem*, 2023, e202301329
 - Capacity greatly influenced by anion structure
 - Can be fully regenerated over 10 times (60 °C)
 - More negative ΔG for pyrazolate than phenolate

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

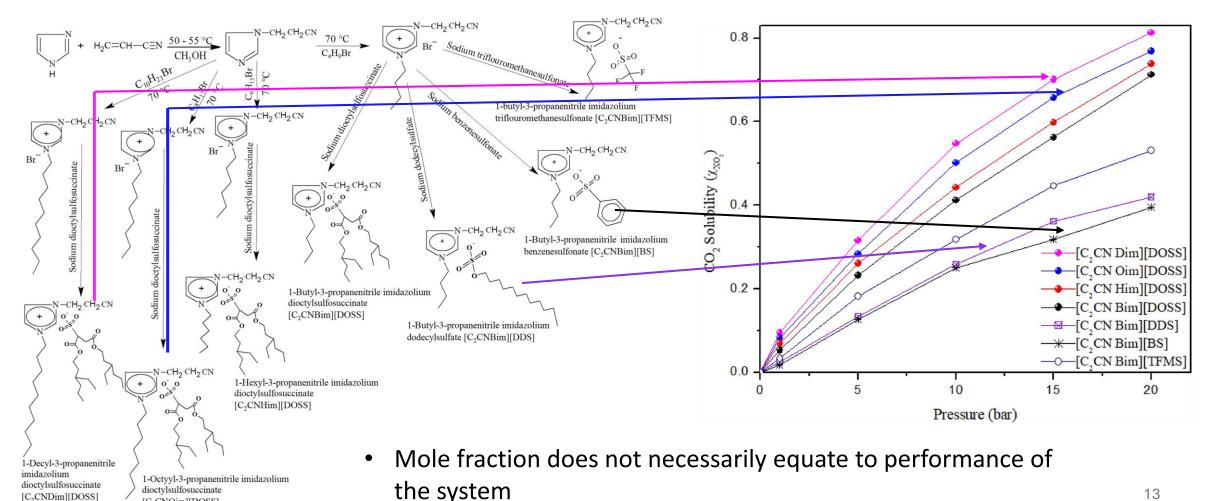

Exploring the Effect of Different Anions and Cations on the Solubility of CO₂ in Nitrile Imidazolium-Based Ionic Liquids with Sulfonated-Based Anions

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

A. K. Ziyada, A. Osman, A. A. Elbashir, A. M. Khan, C. D. Wilfred, J. Chem. Eng. 2024

- Systematically studied structure relation to CO₂ capacity
- Experiments carried out using gravimetric apparatus
- Temperature effects on CO₂
 solubility studied between 298 358 K

Exploring the Effect of Different Anions and Cations on the Solubility of CO₂ in Nitrile Imidazolium-Based Ionic VINIVERSITY **Liquids with Sulfonated-Based Anions**



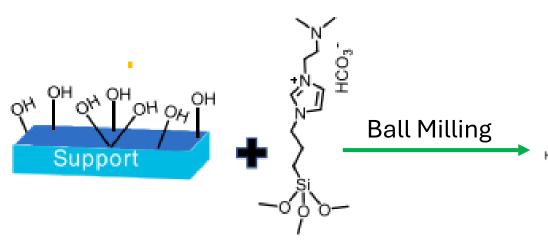
QUEEN'S UNIVERSITY **IONIC LIQUID LABORATORIES** QUILL

A. K. Ziyada, A. Osman, A. A. Elbashir, A. M. Khan, C. D. Wilfred, J. Chem. Eng. 2024

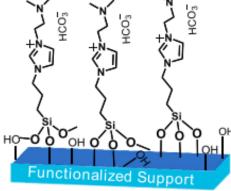
[C2CNDim][DOSS]

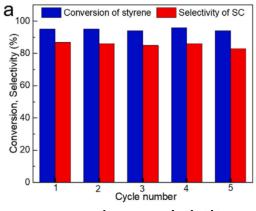
[C2CNOim][DOSS]

Heterogeneous Catalysis


One-pot synthesis of cyclic carbonates from olefins and CO₂ catalyzed by silica-supported imidazolium hydrogen carbonate ionic liquids

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL


Zhao, T.; Long, G.; Liang, H.; Xiong, W.; Hu, X. Microporous and Mesoporous Materials, 2023, 356, 112576

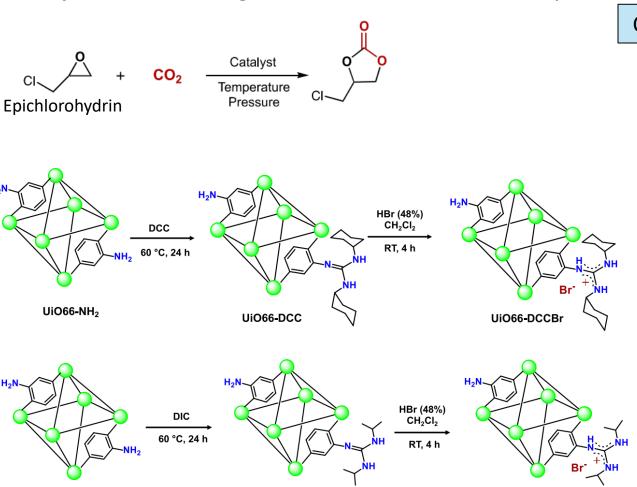

Silica Imidazolium hydrogen carbonate IL

4 catalysts

[Im][HCO₃]@SBA-15

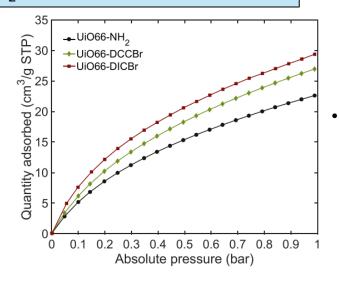
Catalytic results		Catalyst	Con.	Sel.(%)		Yield of SC		
		(%)	SC	SO	BA	(%)	a .	
	1	None	13	0	45	55	0	
	2	[Im][HCO ₃]@SBA-15	78	72	10	7	56	
	3	NH_2 -[Im][HCO $_3$]@SBA- 15	72	74	12	6	53	
	4	$N(CH_3)_2$ -[Im][HCO ₃] @SBA-15	80	75	11	10	60	100 mg cat.
lysts	5	N(Et) ₂ -[Im][HCO ₃] @SBA-15	70	76	8	12	53	
., 0.10	6 ^b	$N(CH_3)_2$ -[Im][HCO ₃]	50	36	55	9	18	50 mg cat.
N Igo	7 ^c	@SBA-15	92	77	6	9	70	150 mg cat.
يُّوا خ. 8	8 ^d		9	19	0	0	1.7	H_2O_2
οξ +ν _{οδ}	9 ^e		99	73	16	11	72	TĤBP
- (1	10 ^{c,e}		98	80	6	9	78	
Ņ-	11'	$N(CH_3)_2$ - $[Im][HCO_3]$	88	78	13	7	69	<u> </u>
5	12 ^j	SBA-15	15	0	3	97	0	

Good recyclability


Post-synthetic modification of Zr-MOFs using guanidine for cyclic carbonate formation catalysis

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Nataj, S. M. M.; Kaliaguine, S.; Fontaine, F-G. Catalysis Today, 2023, 422, 114216

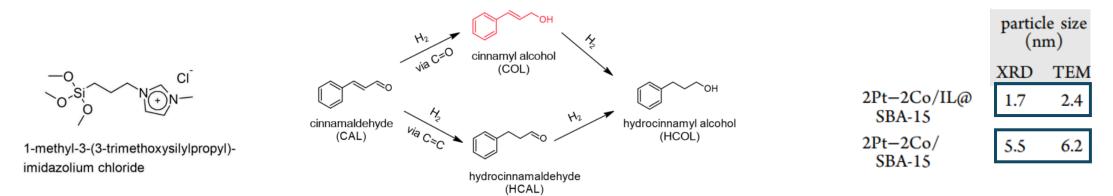

UiO66-DICBr

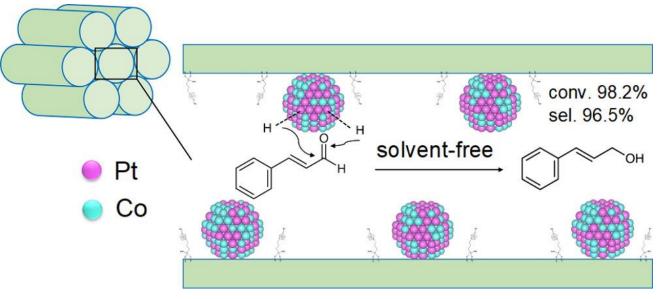
UiO66-DIC

UiO66-NH₂

CO₂ adsorption isotherms 298K

The grafted materials show better CO₂ adsorption properties


Entry	Catalyst	P (MPa)	T (°C)	time (h)	Yield (%) ^c
1	ZrCl ₄	1.0	100	24	trace
2	UiO66-NH ₂	1.0	100	24	12
3	UiO66-DCC	1.0	100	24	
4	UiO66-DIC	1.0	100	24	
5	UiO66-DCCBr	1.0	80	24	76
6	UiO66-DICBr	1.0	80	24	88
7	UiO66-DCCBr	1.0	90	24	96
8	UiO66-DICBr	1.0	90	24	> 99
9	UiO66-DCCBr	0.5	80	24	71
10	UiO66-DICBr	0.5	80	24	75
11	UiO66-DCCBr	0.5	90	16	95
12	UiO66-DICBr	0.5	90	16	> 99

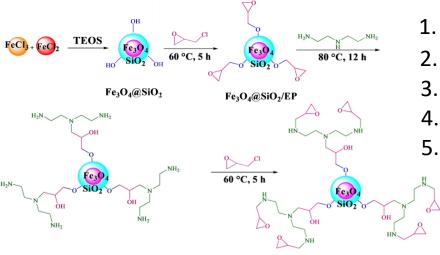

Highly active Pt-Co bimetallic nanoparticles on ionic liquidmodified SBA-15 for solvent-free selective hydrogenation of cinnamaldehyde

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Kusumawati, E. T.; Sasaki, T.; Shirai, M. ACS Appl. Nano Mater. 2023, 6, 17913-17923

				products sel. (%)			
_	entry	catalyst	CAL conv. (%)	COL	HCAL	HCOL	
	1	2Pt-2Co/IL@SBA-15	97.1	96.2	0	3.8	
	2	2Pt/IL@SBA-15 (A)	3.1	19.9	80.1	0	_
	3	2Co/IL@SBA-15 (B)	trace	_	_	_	
	4	a mix of A and B	7.9	73.3	19.6	7.2	
	5	IL@SBA-15	trace	_	_	_	
	6	2Pt-2Co/SBA-15	20.7	97.9	2.1	0	
	7	2Pt-2Co/C	73.3	95.2	2.2	2.6	_

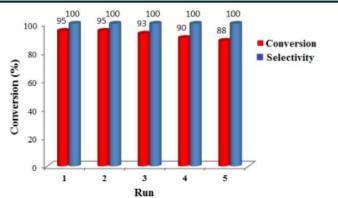
 $[^]a$ Reaction condition: CAL 2 mmol, catalyst 20 mg, H $_2$ 5 MPa, 50 $^{\circ}$ C, 6 h.


Preparation of dicationic ionic liquid immobilized on Fe₃O₄@SiO₂ and evaluation of its catalytic efficiency in the oxidation of alcohols

Fe₃O₄@SiO₂/EP-DETA-EP

queen's university ionic liquid laboratories QUILL

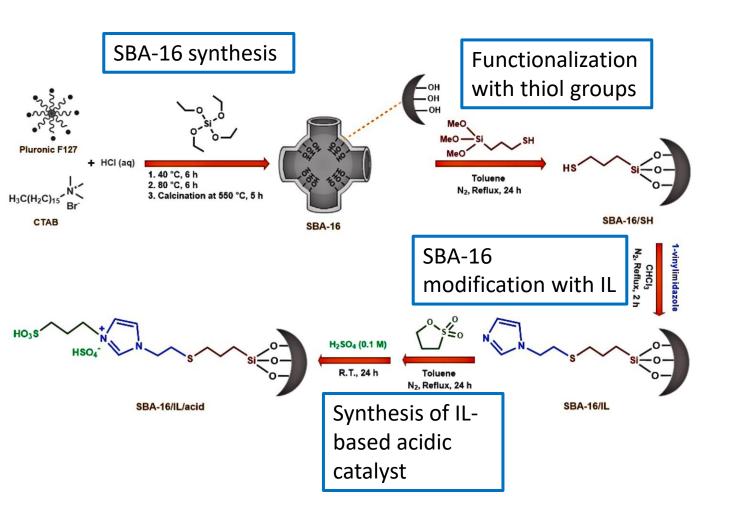
Ebadi, A.; Vadie, S.; Shojaei, S. Chemistry Select, 2023, 8, 1-8


- 1. Synthesis of the magnetic NPs
- 2. Addition of epichlorohydrin as a spacer
- 3. DETA grafted on the surface
- 4. Addition of epichlorohydrin
- 5. Preparation of Fe₃O₄@SiO₂·DIL

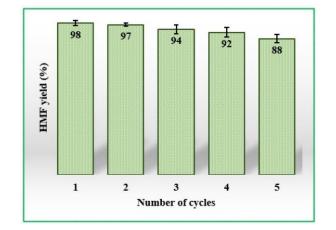
		O
OH	Fe ₃ O ₄ @SiO ₂ ·DIL	H
	CH ₃ CN, 80 °C, H ₂ O ₂	

Reaction Condition	Time (h)	Conversion (%)	Selectivity of benzaldehyde (%)	Ref
Triple-shell hollow CuNiFe ₂ O ₄ spheres, H ₂ O, 80 °C, H ₂ O ₂	4	98	100	36
MnO _x /HAP-10, toluene, 80 °C, O ₂	2	48	97	40
2%V₂O₅/STO, acetonitrile, 80°C, TBHP	3	70	88	41
5%Co₃O₄/HCS₂, DMF, 110°C, O₂	8	50	63	42
Pd/Co)OH) ₂ , Solvent-free, 160 °C, O ₂	4	33	80	43
Au/TiO₂, Solvent-free, 80°C, TBHP, MW irradiation	1	69.3	99.1	44
La _{co} Ce _{co} CoO _{co} toluene, 88 °C, O _c	1	95	95	45
Fe ₃ O ₄ @SiO ₂ ·DIL, CH ₃ CN, 80 °C, H ₂ O ₂	5	95	100	This work

Fe₃O₄@SiO₂/EP-DETA



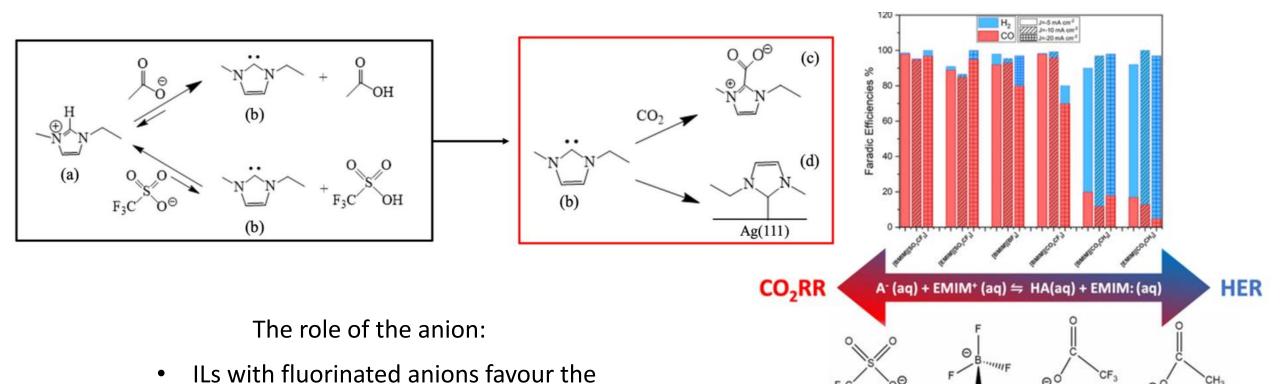
Sulfonated ionic liquid immobilized SBA-16 as an active solid acid catalyst for the synthesis of biofuel precursor 5-hydroxymethylfurfural from fructose



QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Niakan, M.; Masteri-Farahani, M.; Seidi, F. Renewable Energy, 2023, 212, 50-56

Fructose amount (mg)	Catalyst (mg)	Solvent	T (°C)	Time (min)	HMF yield (%)	Ref
50	Si-1-IL-HSO ₄ (40)	DMSO	130	30	63	[24]
100	Cr(Salen)-IM-	DMSO	120	180	83.5	[25]
	HSO4-MCM-41 (50)					
90	PW12-ILs-C4-HNS (60)	DMSO	100	120	93.7	[26]
50	PS-Tet-SO ₃ H (30)	DMSO	150	120	86	[27]
36	b-MPOS (25)	DMSO	135	20	86	[39]
100	PrSO ₃ H/GF (30)	DMSO	120	60	87	[10]
300	Aquivion@silica (163)	DMSO	90	120	85	[40]
100	SO_4^{2-}/TiO_2 (50)	DMSO	150	360	74.7	[41]
100	COP-SO3H/SB	DMSO	120	60	78	[42]
	(55)					
150	SBA-16/IL/acid (15)	DMSO	120	30	98	[This work]


Electrocatalysis

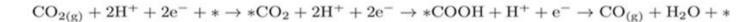
Understanding the role of imidazolium-based ionic liquids in the electrochemical CO₂ reduction reaction

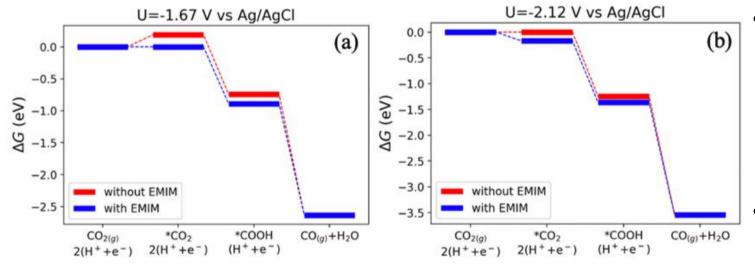
reduction reaction of CO₂ to CO

A. Fortunati, F. Risplendi, M. Re Fiorentin, G. Cicero, E. Parisi, M. Castellino, E. Simone, B. Iliev, T. J. S. Schubert, N. Russo, S. Hernández, *Communications Chemistry*, 2023, **6**, 84

Acetate

Trifluoroacetate

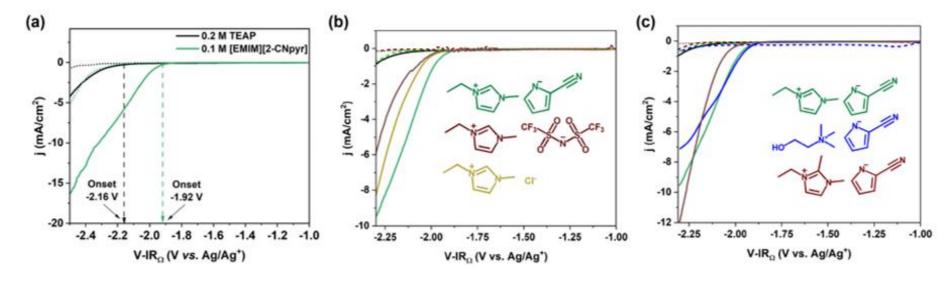

Tetrafluoroborate


Understanding the role of imidazolium-based ionic liquids in the electrochemical CO₂ reduction reaction

A. Fortunati, F. Risplendi, M. Re Fiorentin, G. Cicero, E. Parisi, M. Castellino, E. Simone, B. Iliev, T. J. S. Schubert, N. Russo, S. Hernández, *Communications Chemistry*, 2023, **6**, 84

The role of the cation:

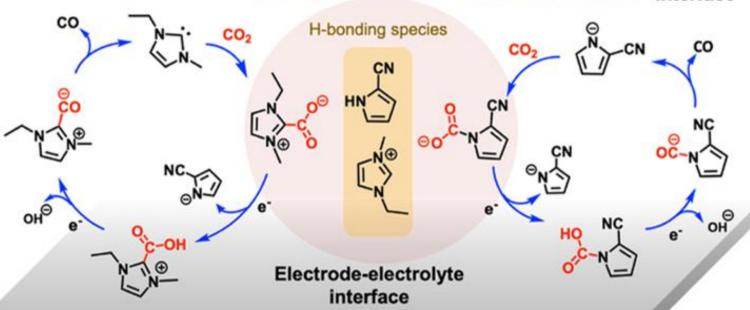
 The presence of the IL cation in the form ([EMIM]⁺ or [BMIM]⁺) helps to stabilize the activation of the CO₂ at the interface of the Ag electrode


Helps to decrease the overpotential of the first-rate determining step and of all the reaction intermediates involved in the electrochemical reduction of CO₂ to CO

A Bifunctional Ionic Liquid for Capture and Electrochemical Conversion of CO₂ to CO over Silver

S. Dongare, O. K. Coskun, E. Cagli, K. Y. C. Lee, G. Rao, R. D. Britt, L. A. Berben, B. Gurkan*, ACS Catal. 2023, 13, 12

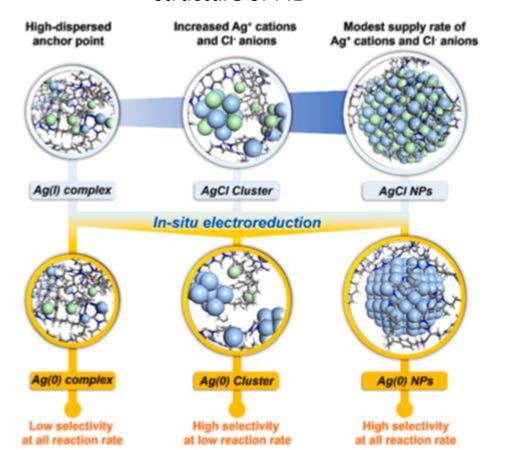
 The exact mechanism by which ILs with imidazolium cations lower the activation energy was unclear

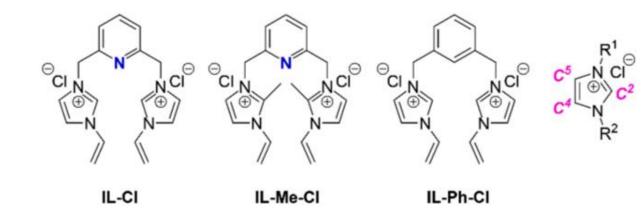

- The co-catalytic activity of the reactive IL [EMIM][2-CNpyr]was studied
- Investigated the roles of the carboxylate and carbamate species
- Identified reaction products agreed with previous paper

A Bifunctional Ionic Liquid for Capture and **Electrochemical Conversion of CO₂ to CO over Silver**

S. Dongare, O. K. Coskun, E. Cagli, K. Y. C. Lee, G. Rao, R. D. Britt, L. A. Berben, B. Gurkan*, ACS Catal. 2023, 13, 12

[EMIM]+ as H-donor 2-CNpyrH as H-donor Two possible interactions on the electrode surface C2 proton of [EMIM]⁺ (pKa_(H2O) \sim 23) -NH proton of 2-CNpyrH (pKa_(H2O) \sim 15) 0=C=0 Gas-liquid interface H-bonding species


Efficient electrocatalytic reduction of CO₂ to CO on highly dispersed Ag nanoparticles confined by Poly(ionic liquid)

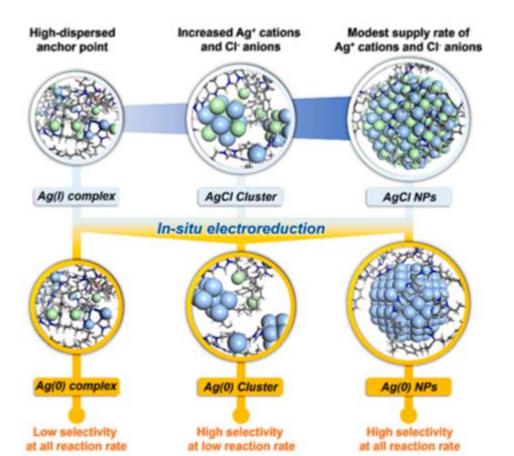


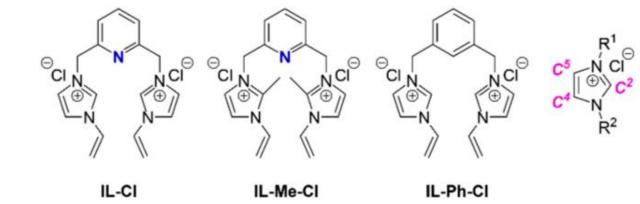
QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

G. Duan, X. Li, Y. Du, B. Xu*, ACS Catal. 2023, 10, 2

- Polyionic liquids (PILs) impregnated with silver salts
 - dosage and type of silver salt
 - structure of PIL

- Corresponding complexes, clusters, and nanoparticles were obtained in the inner domain.
- The distribution of Ag—Cl species in the PIL is highly correlated to both the microstructure of PIL and silver salts used.

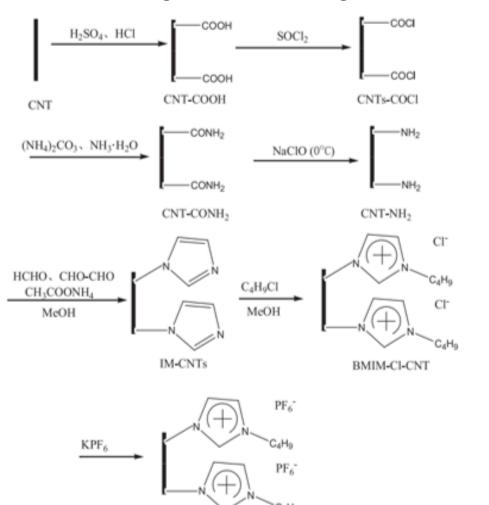

Efficient electrocatalytic reduction of CO₂ to CO on highly dispersed Ag nanoparticles confined by Poly(ionic liquid)



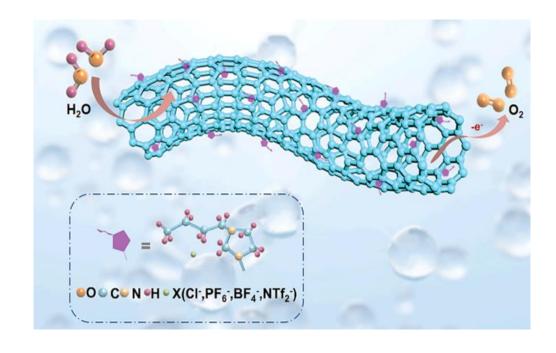
QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

G. Duan, X. Li, Y. Du, B. Xu*, ACS Catal. 2023, **10**, 2

- Polyionic liquids (PILs) impregnated with silver salts
 - dosage and type of silver salt
 - structure of PIL


- Initial reduction of Ag–Cl species to Ag(0) mainly accounts for the CO₂ reduction activity
- The CO₂ reduction performance of PIL-Ag hybrids varies greatly
- PIL-Cl@AgOAc-1.0 mainly consisting of AgCl NPs was selected as the optimized electrocatalyst taking both reactivity and stability into account

Ionic liquid in-situ functionalized carbon nanotube film as self-supported metal-free electrocatalysts for oxygen evolution

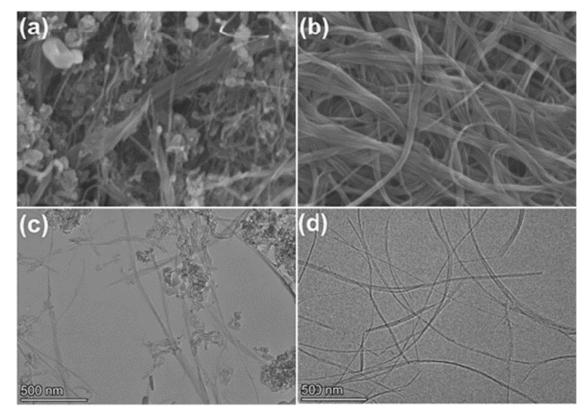


QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

T. Li*, Y. Wang, T. Chen, G. Wang*, C. Qiu*, W. Hu*, Chemical Engineering Journal, 2024, 484, 149767

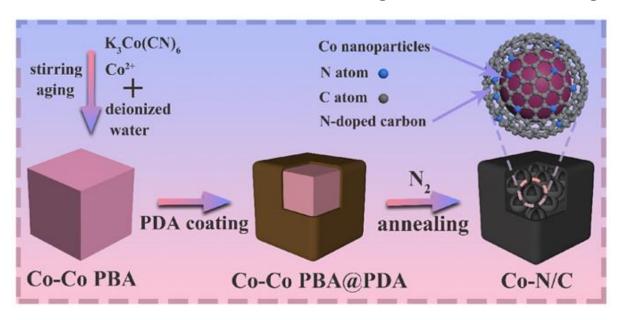
BMIM-PF6-CNT

- An innovative organic functionalization strategy, where the imidazolium-based IL was in-situ synthesized and directly immobilized on the surface of CNT simultaneously
- Effective way to tune the structure of CNT and improve catalytic activity

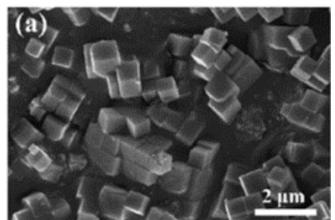

Ionic liquid in-situ functionalized carbon nanotube film as self-supported metal-free electrocatalysts for oxygen evolution

T. Li*, Y. Wang, T. Chen, G. Wang*, C. Qiu*, W. Hu*, *Chemical Engineering Journal*, 2024, **484**, 149767

- IL-CNT exhibited excellent electrocatalytic performance for the oxygen evolution reaction
- IL-CNT powder material can also self-assemble to form a carbon film
- This IL cation direct bonding remarkably improved the oxygen evolution catalytic activity – great potential for practical applications



Double-Layer Carbon Encapsulated Co Particles Combined with Ionic Liquid for Enhancing Electrochemical Detection of Oxygen



QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

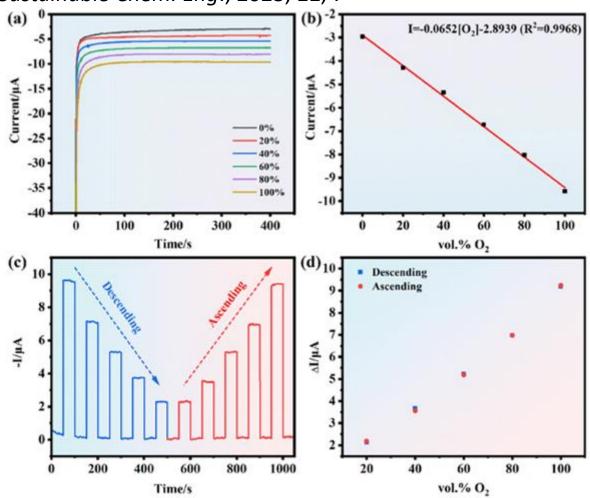
W. Yin, J. Liu*, Q. Liu, J. Zhu, M. Zhang*, P. Liu, R. Li, J. Wang, ACS Sustainable Chem. Eng., 2023, 11, 7

- Synthesized the nitrogen-doped carbon encapsulated Co particles embedded in hollow square box microcubes derived from Prussian blue analogue precursors
- Explored the effects of carbon materials encapsulated with the metallic particle catalyst

- Ionic liquid [C4mpyrr][TFSI] and Co-N/C microcubes synthesized
- Co-N/C was introduced into [C4mpyrr][TFSI]

 enhanced the sensor's electrochemical sensing performance.

Double-Layer Carbon Encapsulated Co Particles Combined with Ionic Liquid for Enhancing Electrochemical Detection of Oxygen



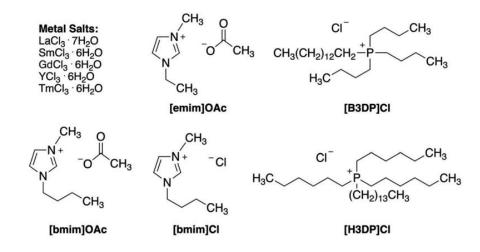
QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

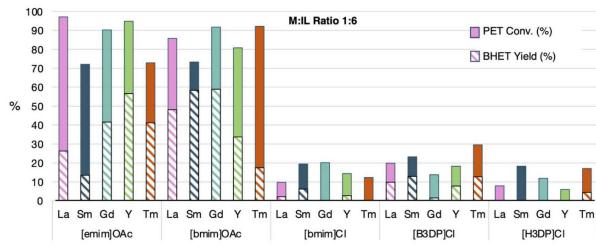
W. Yin, J. Liu*, Q. Liu, J. Zhu, M. Zhang*, P. Liu, R. Li, J. Wang, ACS Sustainable Chem. Eng., 2023, 11, 7

 Significant improvement in O₂ sensing when Co-N/C/[C4mpyrr][TFSI] used compared to [C4mpyrr][TFSI]

 The addition of Co-N/C improves oxygen reduction, enhancing the electrochemical O₂ sensor performance

Polymers

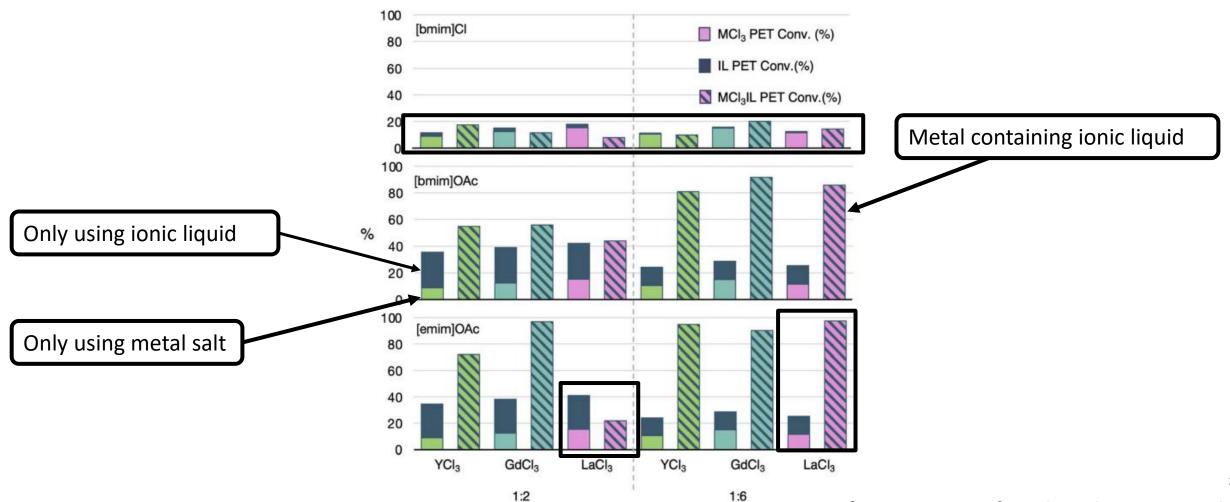

Understanding the important variables to optimize glycolysis of polyethylene terephthalate with lanthanide-containing ionic liquids



QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

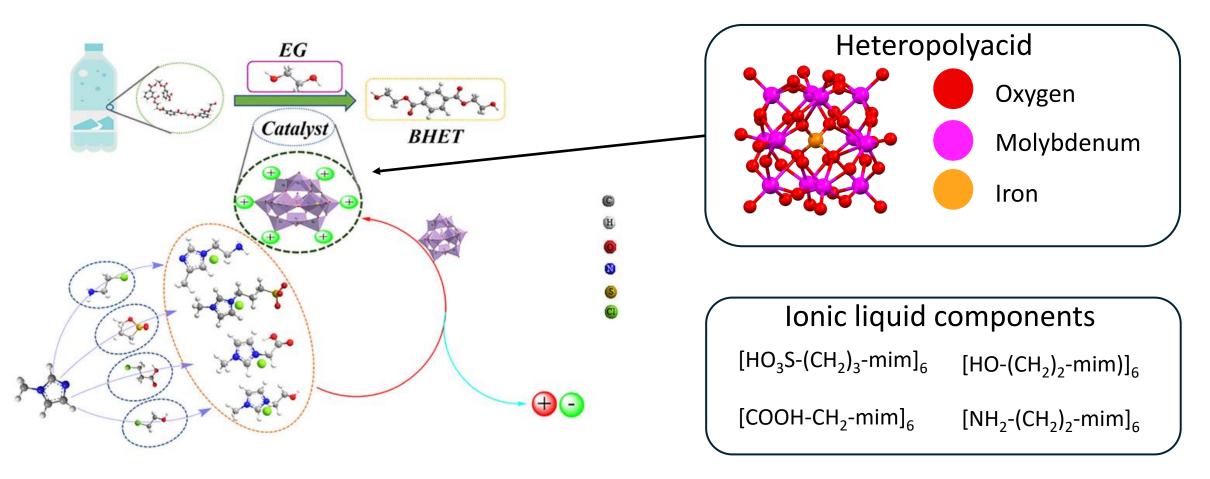
N.G. Bush, C. H. Dinh, C. L. Cattertona and M. E. Fieser, RSC Sustainability, 2023, 1, 938

 Yttrium and gadolinium were identified to be the most promising metals to pursue further, as both showed high PET conversions with both ratios of metal salt to IL



Understanding the important variables to optimize glycolysis of polyethylene terephthalate with lanthanide-containing ionic liquids

QUEEN'S UNIVERSIT'
IONIC LIQUID
LABORATORIES
QUILL


N.G. Bush, C. H. Dinh, C. L. Cattertona and M. E. Fieser, RSC Sustainability, 2023, 1, 938

Preparation of functionalised heteropolyacid ionic liquids and their application in catalytic degradation of bottle-grade polyester

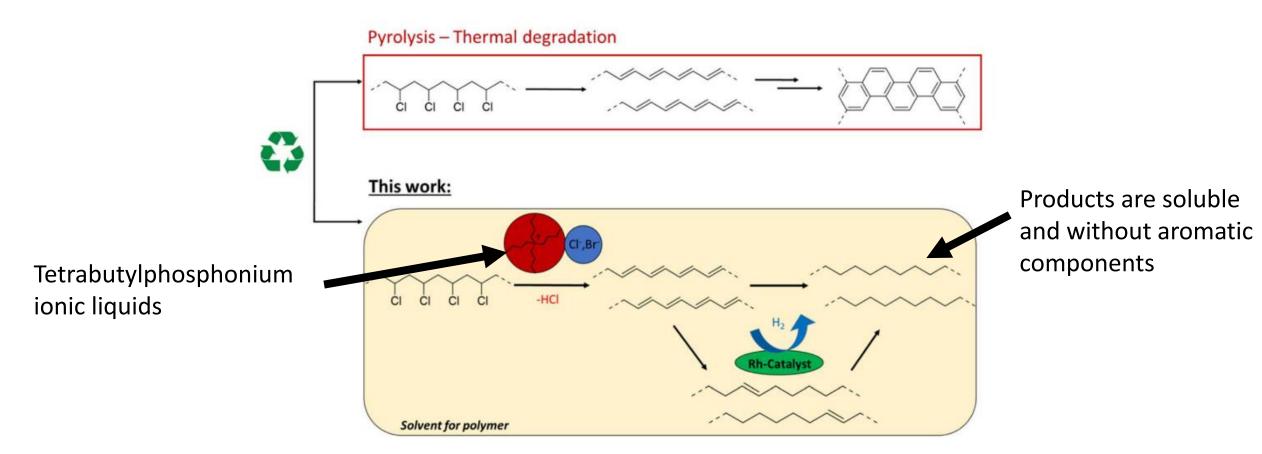
B. Liu, B. Liu, Z. Liao, J. Zhang and L. Guo. New J. Chem., 2023, 47, 19943

Preparation of functionalised heteropolyacid ionic liquids and their application in catalytic degradation of bottle-grade polyester

B. Liu, B. Liu, Z. Liao, J. Zhang and L. Guo. New J. Chem., 2023, 47, 19943

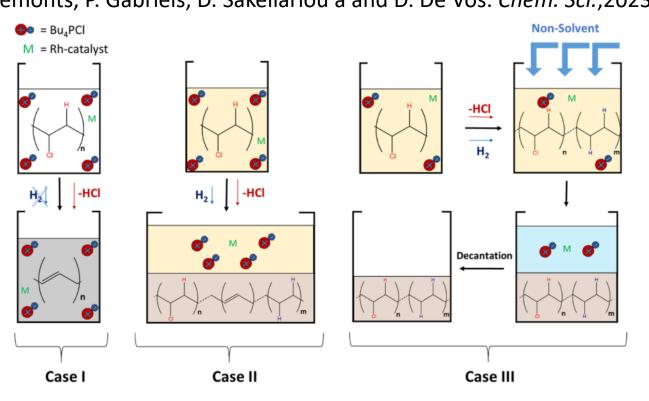
No	Catalyst	D/%	$Y_B/\%$	Further reaction optimisation
1	$[HSO_3-(CH_2)_3-mim]_6[Fe(H_2O)FeMo_{11}O_{39}]$	100	85.26	→100 % conversion of PET
2	$(COOH-CH_2-mim)_6[Fe(H_2O)FeMo_{11}O_{39}]$	100	82.88	91.92 % yield of BHET
3	[HO-(CH2)2-mim]6[Fe(H2O)FeMo11O39]	100	77.34	0.2 % catalyst loading at 196 °C for 3 h
4	$[NH_2-(CH_2)_2-mim]_6[Fe(H_2O)FeMo_{11}O_{39}]$	100	73.38	
5	$Bmim_6[Cu(H_2O)TiMo_{11}O_{39}]$	100	72.3	\
6	$Bmim_6[Pb(H_2O)TiMo_{11}O_{39}]$	100	67.68	
7	$Bmim_6[Fe(H_2O)FeMo_{11}O_{39}]$	100	65.38	Literature comparison
8	$Bmim_7[Pb(H_2O)FeMo_{11}O_{39}]$	99.6	62.46	
9	$Zn(OAc)_2$	94.17	60.35	♦

Note: D—alcoholysis rate, Y_B—the yield of BHET


0.5% catalyst loading at 190 °C for 5 h

Catalytic tandem dehydrochlorination hydrogenation of PVC towards valorisation of chlorinated plastic waste

LABORATORIES


G. O'Rourke, T. Hennebel, M. Stalpaert, A. Skorynina, A. Bugaev, K. Janssens, L. Van Emelen, V. Lemmens, R. D. O. Silva, C. Colemonts, P. Gabriels, D. Sakellariou a and D. De Vos. Chem. Sci., 2023, 14, 4401

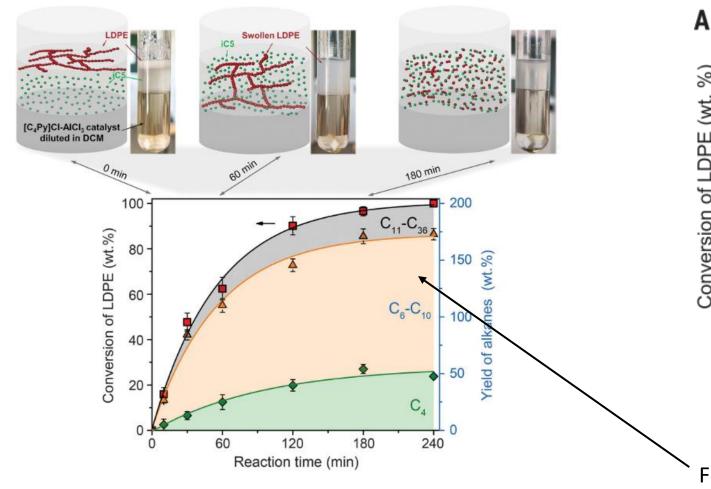
Catalytic tandem dehydrochlorination hydrogenation of PVC towards valorisation of chlorinated plastic waste

G. O'Rourke, T. Hennebel, M. Stalpaert, A. Skorynina, A. Bugaev, K. Janssens, L. Van Emelen, V. Lemmens, R. D. O. Silva, C. Colemonts, P. Gabriels, D. Sakellariou a and D. De Vos. *Chem. Sci.*, 2023, **14**, 4401

81% dehydrochlorination is reached in 2 h, with the hydrogenation proceeding smoothly with minimal catalyst use of 0.5–2.0 mol% Rh.

Case I: Reaction in pure ionic liquid only leads to dehydrochlorination

Case II: an excess of ionic liquid in a solvent, the polymer precipitates spontaneously during reaction

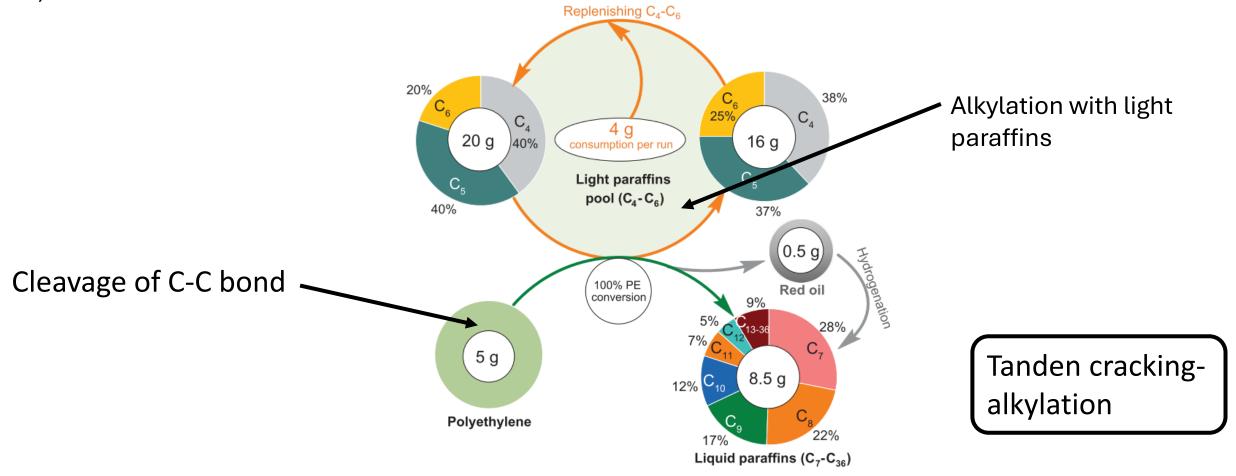

Case III: a limited amount of ionic liquid in a solvent, spontaneous precipitation is avoided, and largely saturated products are obtained

37

Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation

W. Zhang, S. Kim, L. Wahl, R. Khare, L. Hale, J. Hu, D. M. Camaioni, O. Y. Gutiérrez, Y. Liu, J. A. Lercher, *Science*, 2023, **379**, 807-811

70 °C 70 °C 80 60 °C 50 °C 40 00 00 120 180 240 300 360 Reaction time (min)

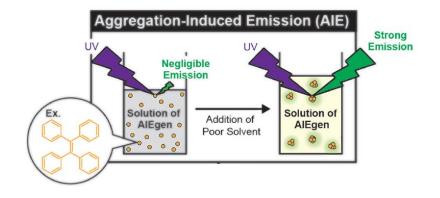

Full conversion of polyolefin to produce a distribution of products

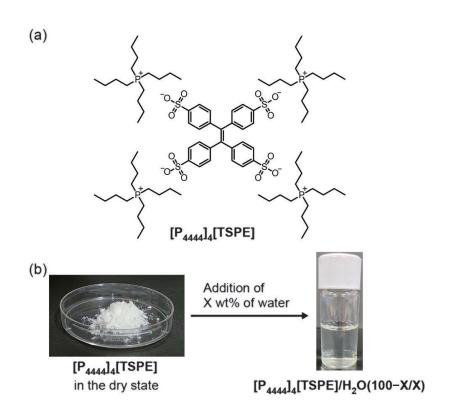
LDPE, 200 mg; iC_5 , 800 mg; $[C_4Py]Cl-AlCl_3$, 3 mmol; TBC as an additive, 5 mg; DCM, 3 ml; and temperature, 70°C.

Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation

W. Zhang, S. Kim, L. Wahl, R. Khare, L. Hale, J. Hu, D. M. Camaioni, O. Y. Gutiérrez, Y. Liu, J. A. Lercher, *Science*, 2023, **379**, 807-811

Polyethylene reaction with light paraffin mixture – 70° C for 2 h

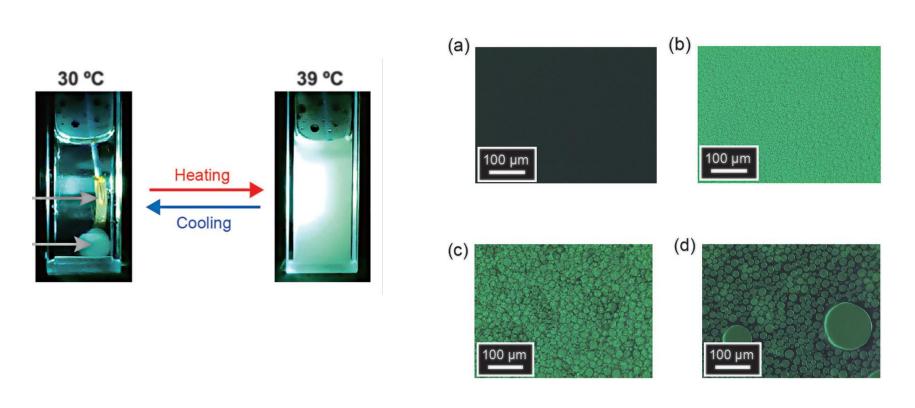

Liquid-liquid separation

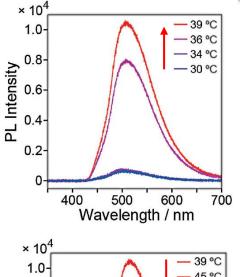

Thermally Reversible On-Off Switching of Aggregationinduced Emission via LCST Phase Transition of Ionic Liquids in Water

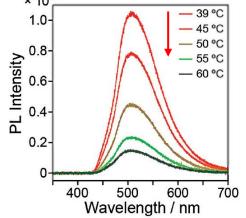
QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

H. Iwasawa, D. Uchida, Y. Hara, M. Tanaka, N. Nakamura, H. Ohno, and T. Ichikawa*, Adv. Optical Mater. 2023, 11, 2301197

AIE : a phenomenon in which a class of π -conjugated molecules show strong photoluminescence in aggregated states and negligible emission in the solution states.


Thermally Reversible On-Off Switching of Aggregation-induced Emission via LCST Phase Transition of Ionic

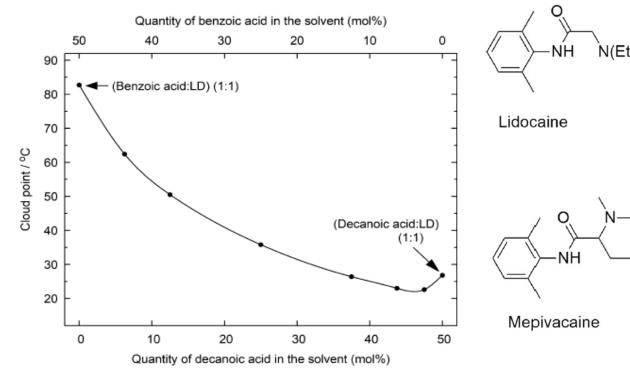


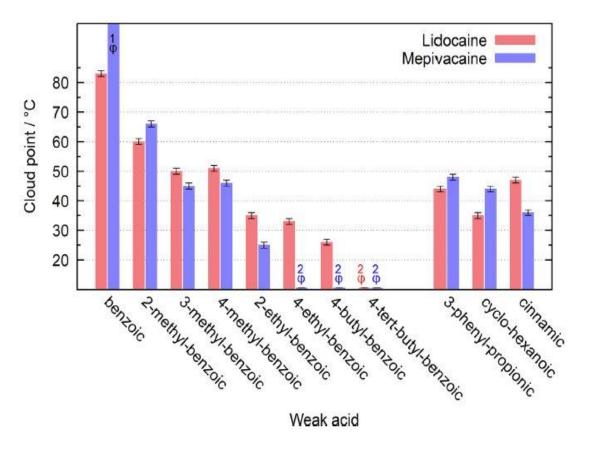

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Liquids in Water

H. Iwasawa, D. Uchida, Y. Hara, M. Tanaka, N. Nakamura, H. Ohno, and T. Ichikawa*, Adv. Optical Mater. 2023, 11, 2301197

- 1. The strongest photoluminescence around the LCST phase transition temperature
- 2. Application: Photoluminescent materials with high sensitivity to temperature


Thermo-switchable hydrophobic solvents formulated with weak acid and base for greener separation processes



QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

- J. C. Corzo, K. B. Busserolles, J. Coxam, A. Gautier, J. M. Andanson*, J. Mol. Lig. 2023, 377, 121468
- 1. Deep Eutectic solvents show LCST phenomena,
- 2. Cloud point temperature can be adjusted based on

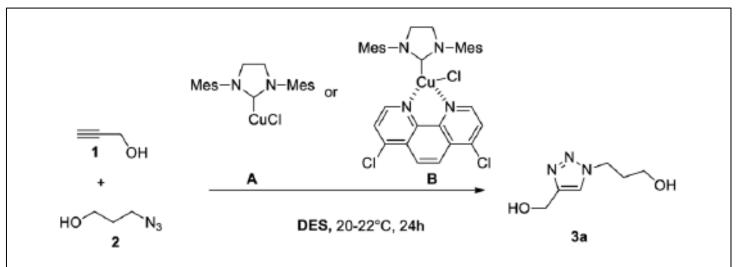
acid: base ratio

Thermo-switchable hydrophobic solvents formulated with weak acid and base for greener separation processes

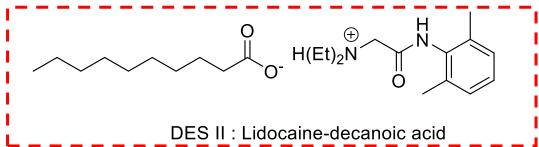
QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

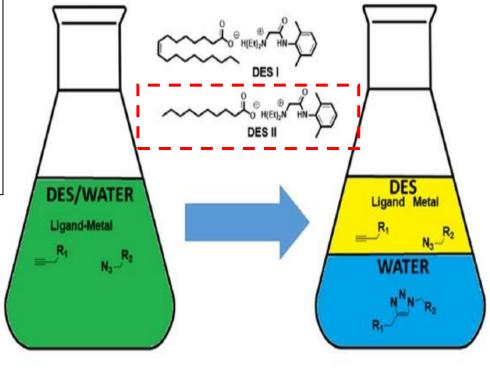
J. C. Corzo, K. B. Busserolles, J. Coxam, A. Gautier, J. M. Andanson*, J. Mol. Liq., 2023, 377, 121468

Achieved 99% extraction of anionic dye, methyl orange, with tested solvents.


				<u> </u>
	Solvent	(Acid:base) (mol%)	Cloud point	EE ⁵
1	Decanoic acid:LD	(50:50)	27 °C	99 %
2	Decanoic acid:LD	(50:50)	27 °C	99 %
3	Pentanoic acid:LD	(50:50)	57 °C	89 %
4	Pentanoic acid:LD	(68:32)	33 °C	89 %
5	Pentanoic acid:LD	(68:32)	33 °C	90 %
6	2EB1 acid:LD	(50:50)	35 °C	96 %
7	2EB1 acid:LD	(50:50)	35 °C	99 %
8	3PP2 acid:LD	(50:50)	44 °C	99 %
9	3PP ² acid:LD	(35:65)	31 °C	97 %
10	3PP ² acid:LD	(35:65)	31 °C	99 %
11	Decanoic acid ³	100 % ³	_	2 %
12	LD in octanol ⁴	10 wt% ⁴	-	50 %

Thermo-switchable hydrophobic deep eutectic solvent for CuAAC

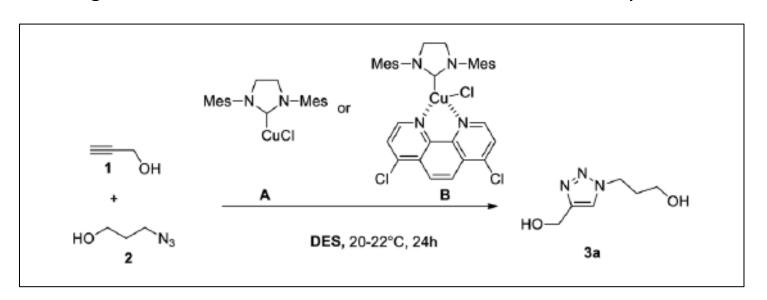



QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

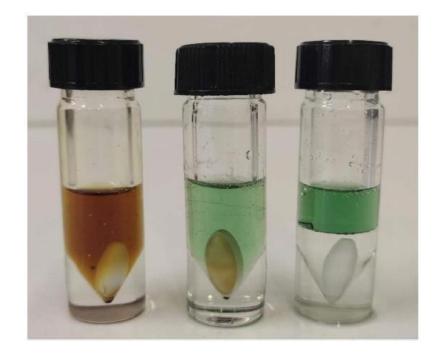
F. C. Pouget, J. M. Andanson* and A. Gautier *, RSC Sustainability, 2023, 1, 1826–1832

- 1. Solvent separates into aqueous and organic layers upon thermal trigger,
- 2. DES acts as a metal trap, providing products with low copper contamination

20°C


>25°C

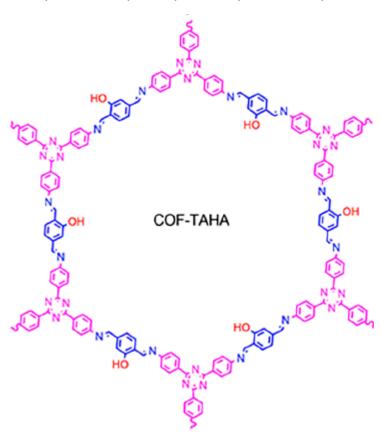
Thermo-switchable hydrophobic deep eutectic solvent for CuAAC

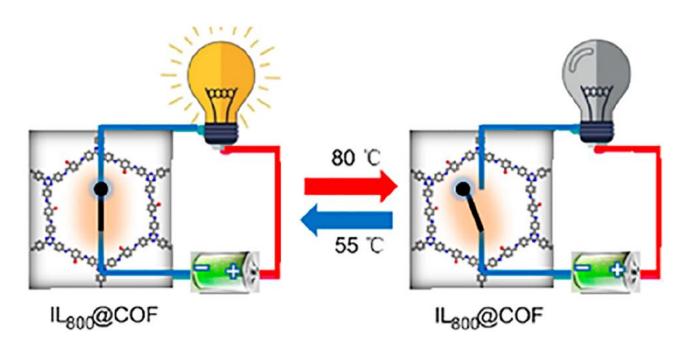

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

F. C. Pouget, J. M. Andanson* and A. Gautier *, RSC Sustainability, 2023, 1, 1826–1832

Experiment	1	2	3	4	5
Yield (catalyst) ^a Copper ^b	95% (B) 0.03%	99% (B) 0.04%	95% (B) 0.02%	95% (B) 0.05%	95% (B) 0.02%
Yield (catalyst) ^a	97% (B)	95% (A)	97% (A)	80% (A)	59% (A)
Copper ^b	0.03%	0.2%	0.07%	0.18%	0.37%

^a Measured by ¹H NMR with 3-trimethylsilyl-1-propanesulfonic acid sodium salt as internal standard. ^b Contamination: mass Cu/total mass.

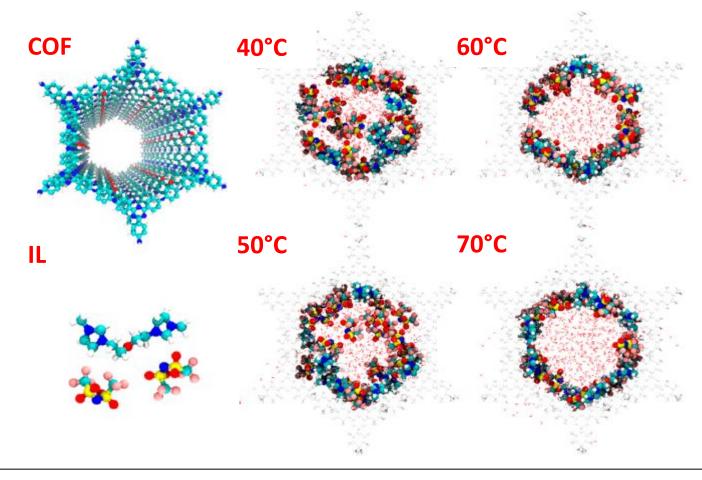

- Good yields of alkyne-azide cycloaddition achieved in aqueous layer,
- Low contamination of products by metals; good reusability of solvents.


Liquid-liquid Phase separation of Aqueous Ionic Liquids in Covalent Organic Frameworks for Thermal Switchable Proton Conductivity

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

W. Yao, Y. Chen, T. F., X. Liu, X. Zhao, S. Gao, Z. Li, H. Wang,* and J. Wang*, J. Phys. Chem. Lett. 2023, 14, 8165–8174

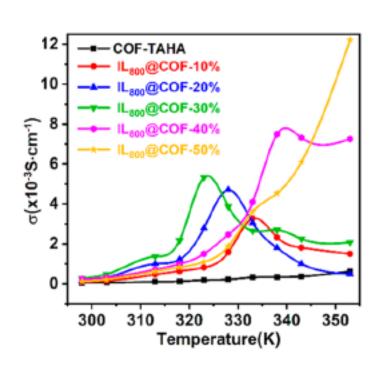
Concept

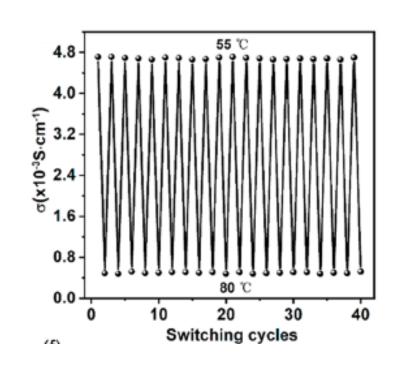

TA: 4,4',4"-(1,3,5-triazine-2,4,6-triyl)trianiline HA: 2-hydroxyterephthalaldehyde

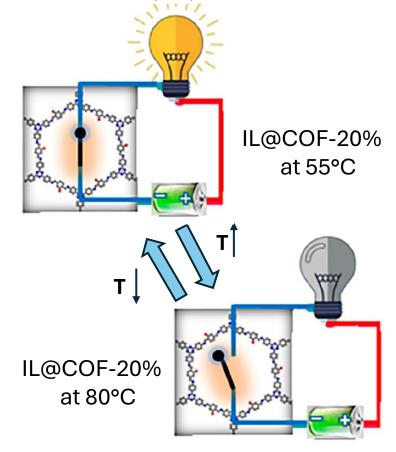
Liquid-liquid Phase separation of Aqueous Ionic Liquids in Covalent Organic Frameworks for Thermal Switchable Proton Conductivity

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

W. Yao, Y. Chen, T. F., X. Liu, X. Zhao, S. Gao, Z. Li, H. Wang,* and J. Wang*, J. Phys. Chem. Lett. 2023, 14, 8165–8174

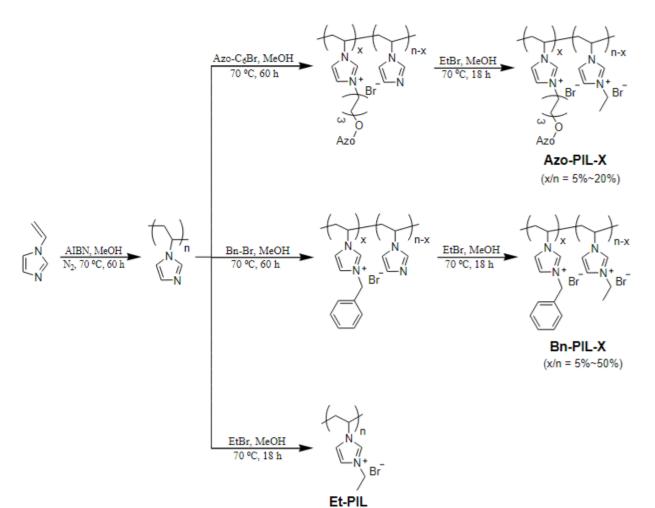


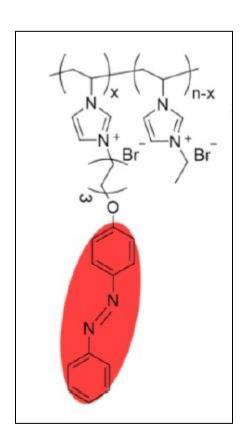

Liquid-liquid Phase separation of Aqueous Ionic Liquids in Covalent Organic Frameworks for Thermal Switchable Proton Conductivity

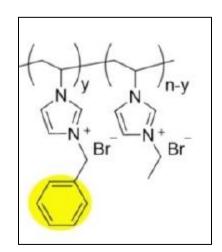


QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

W. Yao, Y. Chen, T. F., X. Liu, X. Zhao, S. Gao, Z. Li, H. Wang,* and J. Wang*, J. Phys. Chem. Lett. 2023, 14, 8165–8174

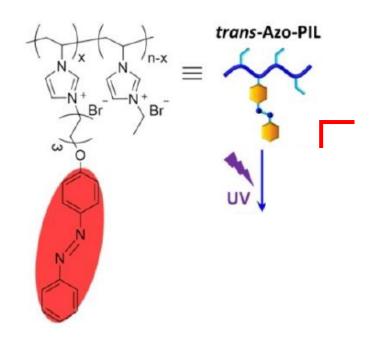





QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Y. Tang, Y. Zhang, X. Chen, X. Xie, N. Zhou, Z. Dai,* and Y. Xiong*, *Angew. Chem. Int. Ed.* **2023**, *62*, e202215722

Azobenzene modified-Poly(Ionic liquid)-X

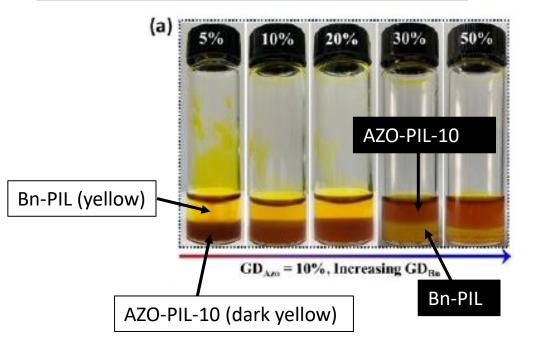


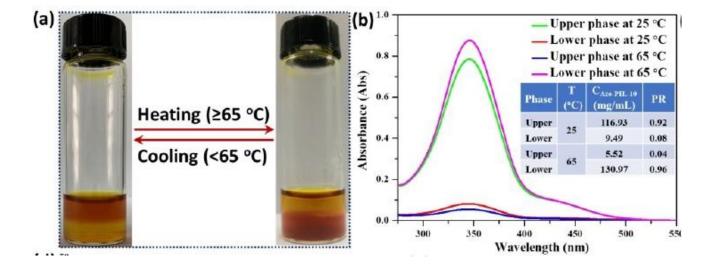
Benzyl modified-Poly(Ionic liquid)-X

X: molar percentage of corresponding alkyl bromide w.r.t imidazole repeat units

Y. Tang, Y. Zhang, X. Chen, X. Xie, N. Zhou, Z. Dai,* and Y. Xiong*, *Angew. Chem. Int. Ed.* **2023**, *62*, e202215722

Aqueous Two-phase System:


- Grafting degree (GD) tuned-
- 2. Thermo-tuned migration
- 3. Light irradiation tuned-

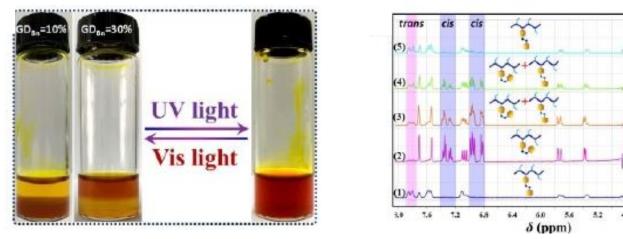

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Y. Tang, Y. Zhang, X. Chen, X. Xie, N. Zhou, Z. Dai,* and Y. Xiong*, *Angew. Chem. Int. Ed.* **2023**, *62*, e202215722

1. Grafting degree (GD) tuned-

2. Thermo-tuned migration

Hydrodynamic Diameter (D_h) of AZO-PIL-10 & Bn-PIL-30 decreased with increasing temperatures,


Decrease is more for AZO-PIL-10 than for Bn-PIL-30

Hydrodynamic Diameter (D_h) of AZO-PIL & Bn-PIL decreased with increasing GD_{azo} & GD_{Bn}

Y. Tang, Y. Zhang, X. Chen, X. Xie, N. Zhou, Z. Dai,* and Y. Xiong*, *Angew. Chem. Int. Ed.* **2023**, *62*, e202215722

3. Light irradiation tuned-

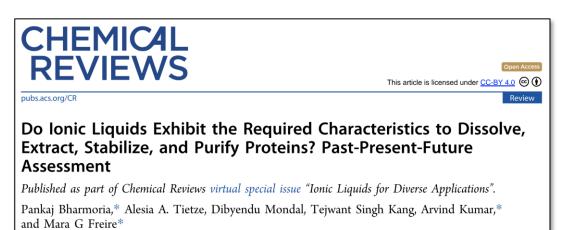
UV light
Vis light

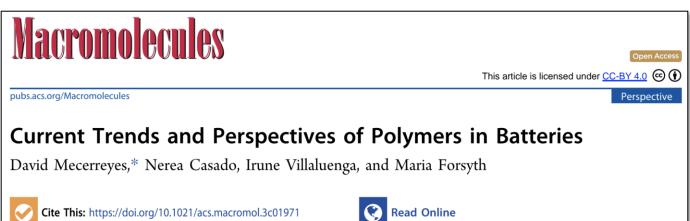
trans-Azo-PIL

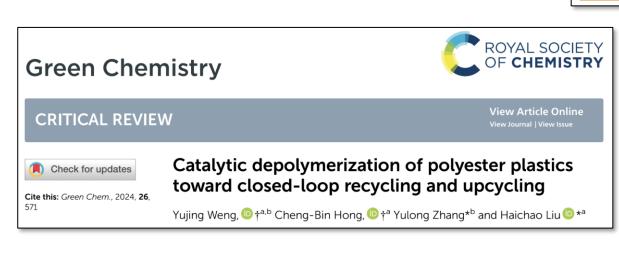
cis-Azo-PIL

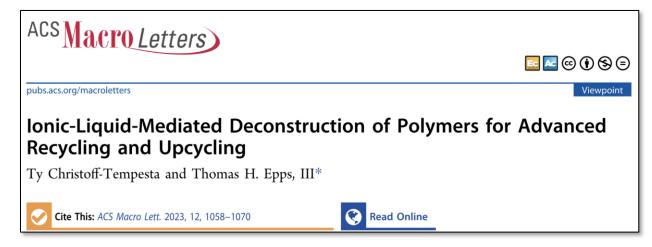
Bn-PIL

H₂O


Cis-Azo-PIL becomes more compatible with Bn-PIL, leading to formation of homogeneous single-phase solution, that can be reversed




Reviews


Ionic liquids and polymers

Ionic liquids and electrocatalysis

Check for updates

Review
ChemElectroChem
Review
doi.org/10.1002/celc.202300771
Chemistry
Europe
European Chemical
Societies Publishing

www.chemelectrochem.org

Role of Ionic Solvents in the Electrocatalytic CO₂ Conversion and H₂ Evolution Suppression: from Ionic Liquids to Deep Eutectic Solvents

Alejandro Leal-Duaso, [a, b] Yanis Adjez, [a] and Carlos M. Sánchez-Sánchez*[a]

Available online at www.sciencedirect.com

ScienceDirect

v kasimbli shira cay (asa

Green Energy & Environment 9 (2024) 604-622

www.keaipublishing.com/gee

Short Review

Ionic liquid derived electrocatalysts for electrochemical water splitting

Tianhao Li ^{a,b,*}, Weihua Hu ^{a,*}

Revier

Ionic Liquids as Promisingly Multi-Functional Participants for Electrocatalyst of Water Splitting: A Review

Chenyun Zhang ¹, Puyu Qu ¹, Mei Zhou ¹, Lidong Qian ¹, Te Bai ¹, Jianjiao Jin ¹ and Bingwei Xin ²,*

Ionic liquids – general knowledge

Acknowledgements

- Professor Gosia Swadźba-Kwaśny
- Everyone who contributed to this presentation